Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosurgery ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578087

RESUMO

BACKGROUND AND OBJECTIVES: Rapid detection of cerebrospinal fluid (CSF) leaks is vital for patient recovery after spinal surgery. However, distinguishing CSF-specific transferrin (TF) from serum TF using lateral flow immunoassays (LFI) is challenging due to their structural similarities. This study aims to develop a novel point-of-care diagnostic assay for precise CSF leak detection by quantifying total TF in both CSF and serum. METHODS: Capitalizing on the substantial 100-fold difference in TF concentrations between CSF and serum, we designed a diagnostic platform based on the well-known "hook effect" resulting from excessive analyte presence. Clinical samples from 37 patients were meticulously tested using the novel LFI sensor, alongside immunofixation as a reference standard. RESULTS: The hook effect-based LFI sensor exhibited outstanding performance, successfully discriminating positive clinical CSF samples from negative ones with remarkable statistical significance (positive vs negative t-test; P = 1.36E-05). This novel sensor achieved an impressive 100% sensitivity and 100% specificity in CSF leak detection, demonstrating its robust diagnostic capabilities. CONCLUSION: In conclusion, our study introduces a rapid, highly specific, and sensitive point-of-care test for CSF leak detection, harnessing the distinctive TF concentration profile in CSF compared with serum. This novel hook effect-based LFI sensor holds great promise for improving patient outcomes in the context of spinal surgery and postsurgical recovery. Its ease of use and reliability make it a valuable tool in clinical practice, ensuring timely and accurate CSF leak detection to enhance patient care.

2.
Sci Rep ; 12(1): 19873, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400803

RESUMO

This study aimed to automatically classify live cells based on their cell type by analyzing the patterns of backscattered signals of cells with minimal effect on normal cell physiology and activity. Our previous studies have demonstrated that label-free acoustic sensing using high-frequency ultrasound at a high pulse repetition frequency (PRF) can capture and analyze a single object from a heterogeneous sample. However, eliminating possible errors in the manual setting and time-consuming processes when postprocessing integrated backscattering (IB) coefficients of backscattered signals is crucial. In this study, an automated cell-type classification system that combines a label-free acoustic sensing technique with deep learning-empowered artificial intelligence models is proposed. We applied an one-dimensional (1D) convolutional autoencoder to denoise the signals and conducted data augmentation based on Gaussian noise injection to enhance the robustness of the proposed classification system to noise. Subsequently, denoised backscattered signals were classified into specific cell types using convolutional neural network (CNN) models for three types of signal data representations, including 1D CNN models for waveform and frequency spectrum analysis and two-dimensional (2D) CNN models for spectrogram analysis. We evaluated the proposed system by classifying two types of cells (e.g., RBC and PNT1A) and two types of polystyrene microspheres by analyzing their backscattered signal patterns. We attempted to discover cell physical properties reflected on backscattered signals by controlling experimental variables, such as diameter and structure material. We further evaluated the effectiveness of the neural network models and efficacy of data representations by comparing their accuracy with that of baseline methods. Therefore, the proposed system can be used to classify reliably and precisely several cell types with different intrinsic physical properties for personalized cancer medicine development.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Acústica , Frequência Cardíaca , Ultrassonografia
3.
Brain Behav Immun ; 104: 65-73, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35618226

RESUMO

Prognostic biomarkers for depression treatment outcomes have yet to be elucidated. This study sought to evaluate whether a multi-modal serum biomarker panel was prospectively associated with 12-week and 12-month remission in outpatients with depressive disorders receiving stepwise psychopharmacotherapy. At baseline, 14 serum biomarkers and socio-demographic/clinical characteristics were evaluated in 1094 patients. They received initial antidepressant monotherapy followed, as required by a protocol of successive alternative pharmacological strategies administered in 3-week steps during the acute (3-12 week) phase (N = 1086), and in 3-month steps during the continuation (6-12 month) phase (N = 884). Remission was defined as a Hamilton Depression Rating Scale score of ≤ 7. Remission was achieved in 490 (45.1%) over the 12-week, and in 625 (70.7%) over the 12-month, treatment periods. Combination scores of four serum biomarkers (high-sensitivity C-reactive protein, interleukin-1 beta, interleukin-6, and leptin) were prospectively associated with 12-week remission; and four (high-sensitivity C-reactive protein, tumor necrosis factor-alpha, interleukin-1 beta, and brain-derived neurotrophic factor) were prospectively associated with 12-month remission in a clear gradient manner (P-values < 0.001) and after adjustment for relevant covariates. These associations were evident after the Step 1 treatment monotherapy but weakened with increasing treatment steps, falling below statistical significance after 4 + treatment steps. Application of combined multiple serum biomarkers, particularly on inflammatory markers, could improve predictability of remission at acute and continuation treatment phases for depressive disorders. Patients with unfavourable biomarkers might require alternative treatment regimes for better outcomes.

4.
Sci Transl Med ; 13(616): eabe2352, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669441

RESUMO

Tetrahydrocannabinol (THC), the primary psychoactive ingredient of cannabis, impairs cognitive and motor function in a concentration-dependent fashion. Drug testing is commonly performed for employment and law enforcement purposes; however, available tests produce low-sensitive binary results (lateral flow assays) or have long turnaround (gas chromatography­mass spectrometry). To enable on-site THC quantification in minutes, we developed a rapid assay for oral THC analysis called EPOCH (express probe for on-site cannabis inhalation). EPOCH features distinctive sensor design such as a radial membrane and transmission optics, all contained in a compact cartridge. This integrated approach permitted assay completion within 5 min with a detection limit of 0.17 ng/ml THC, which is below the regulatory guideline (1 ng/ml). As a proof of concept for field testing, we applied EPOCH to assess oral fluid samples from cannabis users (n = 43) and controls (n = 43). EPOCH detected oral THC in all specimens from cannabis smokers (median concentration, 478 ng/ml) and THC-infused food consumers. Longitudinal monitoring showed a fast drop in THC concentrations within the first 6 hours of cannabis smoking (half-life, 1.4 hours).


Assuntos
Dronabinol , Detecção do Abuso de Substâncias , Bioensaio , Saliva , Espectrometria de Massas em Tandem
5.
J Microbiol Biotechnol ; 30(4): 526-532, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32238766

RESUMO

A bacterial strain, designated B301T and isolated from raw chicken meat obtained from a local market in Korea, was characterized and identified using a polyphasic taxonomic approach. Cells were gram-negative, non-motile, obligate-aerobic coccobacilli that were catalase-positive and oxidase-negative. The optimum growth conditions were 30°C, pH 7.0, and 0% NaCl in tryptic soy broth. Colonies were round, convex, smooth, and cream-colored on tryptic soy agar. Strain B301T has a genome size of 3,102,684 bp, with 2,840 protein-coding genes and 102 RNA genes. The 16S rRNA gene analysis revealed that strain B301T belongs to the genus Acinetobacter and shares highest sequence similarity (97.12%) with A. celticus ANC 4603T and A. sichuanensis WCHAc060041T. The average nucleotide identity and digital DNA-DNA hybridization values for closely related species were below the cutoff values for species delineation (95-96% and 70%, respectively). The DNA G+C content of strain B301T was 37.0%. The major respiratory quinone was Q-9, and the cellular fatty acids were primarily summed feature 3 (C16:1 ω6c/C16:1 ω7c), C16:0, and C18:1 ω9c. The major polar lipids were phosphatidylethanolamine, diphosphatidyl-glycerol, phosphatidylglycerol, and phosphatidyl-serine. The antimicrobial resistance profile of strain B301T revealed the absence of antibiotic-resistance genes. Susceptibility to a wide range of antimicrobials, including imipenem, minocycline, ampicillin, and tetracycline, was also observed. The results of the phenotypic, chemotaxonomic, and phylogenetic analyses indicate that strain B301T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter pullorum sp. nov. is proposed. The type strain is B301T (=KACC 21653T = JCM 33942T).


Assuntos
Acinetobacter/classificação , Filogenia , Aves Domésticas/microbiologia , Acinetobacter/citologia , Acinetobacter/efeitos dos fármacos , Acinetobacter/fisiologia , Animais , Antibacterianos/farmacologia , Composição de Bases , Galinhas , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Quinonas/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
6.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31930392

RESUMO

Vascular endothelial cells are essential to vascular function and maintenance. Dysfunction of these cells can lead to the development of cardiovascular disease or contribute to tumorigenesis. As such, the therapeutic modulation and monitoring of vascular endothelial cells are of significant clinical interest, and several endothelial-specific ligands have been developed for drug delivery and the monitoring of endothelial function. However, the application of these ligands has been limited by their high cost and tendency to induce immune responses, highlighting a need for alternate methods of targeting vascular endothelial cells. In the present study, we explore the therapeutic potential of DNA aptamers. Using cell-SELEX technology, we identified two aptamers with specific binding affinity for vascular endothelial cells and propose that these molecules show potential for use as new ligands for drug and biomarker research concerning vascular endothelial cells.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Células Endoteliais/metabolismo , Ácidos Nucleicos Imobilizados/metabolismo , Animais , Biomarcadores/metabolismo , Carcinogênese/metabolismo , Doenças Cardiovasculares/metabolismo , Feminino , Ligantes , Ratos
7.
Microsyst Nanoeng ; 6: 39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567652

RESUMO

Advancements in diagnostic systems for metastatic cancer over the last few decades have played a significant role in providing patients with effective treatment by evaluating the characteristics of cancer cells. Despite the progress made in cancer prognosis, we still rely on the visual analysis of tissues or cells from histopathologists, where the subjectivity of traditional manual interpretation persists. This paper presents the development of a dual diagnosis and treatment tool using an in vitro acoustic tweezers platform with a 50 MHz ultrasonic transducer for label-free trapping and bursting of human breast cancer cells. For cancer cell detection and classification, the mechanical properties of a single cancer cell were quantified by single-beam acoustic tweezers (SBAT), a noncontact assessment tool using a focused acoustic beam. Cell-mimicking phantoms and agarose hydrogel spheres (AHSs) served to standardize the biomechanical characteristics of the cells. Based on the analytical comparison of deformability levels between the cells and the AHSs, the mechanical properties of the cells could be indirectly measured by interpolating the Young's moduli of the AHSs. As a result, the calculated Young's moduli, i.e., 1.527 kPa for MDA-MB-231 (highly invasive breast cancer cells), 2.650 kPa for MCF-7 (weakly invasive breast cancer cells), and 2.772 kPa for SKBR-3 (weakly invasive breast cancer cells), indicate that highly invasive cancer cells exhibited a lower Young's moduli than weakly invasive cells, which indicates a higher deformability of highly invasive cancer cells, leading to a higher metastasis rate. Single-cell treatment may also be carried out by bursting a highly invasive cell with high-intensity, focused ultrasound.

8.
Anal Chem ; 91(15): 10001-10007, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31269392

RESUMO

Paper-based lateral flow immunoassays (LFIAs) using conventional sandwich-type immunoassays are one of the most commonly used point-of-care (PoC) tests. However, the application of gold nanoparticles (AuNPs) in LFIAs does not meet sensitivity requirements for the detection of infectious diseases or biomarkers present at low concentrations in body fluids because of the limited number of AuNPs that can bind to the target. To overcome this problem, we first developed a single-stranded DNA binding protein (RPA70A, DNA binding domain A of human Replication Protein A 70 kDa) conjugated to AuNPs for a sandwich assay using a capture antibody immobilized in the LFIA and an aptamer as a detection probe, thus, enabling signal intensity enhancement by attaching several AuNPs per aptamer. We applied this method to detect the influenza nucleoprotein (NP) and cardiac troponin I (cTnI). We visually detected spiked targets at a low femtomolar range, with limits of detection for NP in human nasal fluid and for cTnI in serum of 0.26 and 0.23 pg·mL-1, respectively. This technique showed significantly higher sensitivity than conventional methods that are widely used in LFIAs involving antibody-conjugated AuNPs. These results suggest that the proposed method can be universally applied to the detection of substances requiring high sensitivity and can be used in the field of PoC testing for early disease diagnosis.


Assuntos
Biomarcadores/sangue , Ouro/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Proteína de Replicação A/química , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Biomarcadores/análise , Humanos , Limite de Detecção , Líquido da Lavagem Nasal/química , Proteínas do Nucleocapsídeo , Papel , Sistemas Automatizados de Assistência Junto ao Leito , Troponina I/sangue , Proteínas do Core Viral/análise , Proteínas do Core Viral/imunologia
9.
J Dairy Sci ; 102(8): 6718-6725, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31155246

RESUMO

This study aimed to screen lactic acid bacteria (LAB) for their anti-inflammatory activity by using RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis. In all, 192 LAB strains were isolated from healthy human feces, of which 8 strains showed excellent nitric oxide (NO) inhibitory activity. Peptidoglycan extracts of these 8 LAB strains were subjected to NO assay, Western blot, and ELISA. Among the 8 tested strains, extracts of 4 strains significantly inhibited the production of NO, related enzyme activities such as inducible nitric oxide synthase and cyclooxygenase 2, and key cytokines such as tumor necrosis factor-α and IL-6 in RAW264.7 cells. The 4 strains belonged to Lactobacillus (CAU1054, CAU1055, CAU1064, and CAU1301). Oral administration of the 4 strains inhibited DSS-induced body weight loss, colon shortening, and colon damage in ICR mice. The colon tissue of the mice treated with Lactobacillus plantarum strain CAU1055 had significantly reduced levels of inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor-α, and IL-6. We found that strain CAU1055 could be used as a candidate probiotic strain for the prevention and treatment of inflammatory bowel disease. Further studies are warranted to confirm the mechanisms of interaction between peptidoglycan of L. plantarum strain CAU1055 and upstream cellular signaling mediators.


Assuntos
Colite/prevenção & controle , Sulfato de Dextrana/farmacologia , Inflamação/prevenção & controle , Lactobacillus plantarum/fisiologia , Lipopolissacarídeos/farmacologia , Animais , Colite/induzido quimicamente , Colite/terapia , Inibidores de Ciclo-Oxigenase 2 , Citocinas/antagonistas & inibidores , Modelos Animais de Doenças , Fezes/microbiologia , Humanos , Inflamação/terapia , Lactobacillus plantarum/isolamento & purificação , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Probióticos/administração & dosagem , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
10.
Anal Chem ; 90(17): 10171-10178, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30081627

RESUMO

Bacterial infections are common causes of morbidity and mortality worldwide; therefore, environmental contamination by bacterial pathogens represents a global public health concern. Consequently, a selective, rapid, sensitive, and in-field detection platform for detecting significant bacterial contamination is required to ensure hygiene and protect public health. Here, we developed a fast and simple platform for the selective and sensitive detection of bacteria by measuring adenosine triphosphate (ATP) bioluminescence following targeted photothermal lysis mediated by antibody-conjugated gold nanorods. This method employed both targeted photothermal lysis of bacteria by near-infrared (NIR) irradiation and highly selective detection of the lysed bacteria via ATP bioluminescence within 36 min (incubation, 30 min; NIR irradiation, 6 min). The use of the proposed method allowed limits of detection in pure solution of 12.7, 70.7, and 5.9 CFU for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes, respectively. Additionally, bacteria were successfully detected on artificially inoculated plastic cutting boards. Furthermore, this method was highly specific, without cross-reaction among pathogenic bacteria. We believe that the proposed method has significant potential as an on-site diagnostic tool for applications associated with public health and environmental pollution monitoring.


Assuntos
Trifosfato de Adenosina/metabolismo , Escherichia coli O157/isolamento & purificação , Ouro/química , Listeria monocytogenes/isolamento & purificação , Nanotubos/química , Salmonella typhimurium/isolamento & purificação , Raios Infravermelhos , Medições Luminescentes
11.
Ultrasound Med Biol ; 44(3): 622-634, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29284555

RESUMO

Manipulation of cellular functions and structures by introduction of genetic materials inside cells has been one of the most prominent research areas in biomedicine. High-frequency ultrasound acoustic-transfection has recently been developed and confirmed by intracellular delivery of small molecules into HeLa cells at the single-cell level with high cell viability. After we proved the concept underlying the acoustic-transfection technique, treatment conditions for different human cancer cell lines have been intensively investigated to further develop acoustic-transfection as a versatile and adaptable transfection method by satisfying the requirements of high-delivery efficiency and cell membrane permeability with minimal membrane disruption. To determine optimal treatment conditions for different cell lines, we developed a quantitative intracellular delivery score based on delivery efficiency, cell membrane permeability and cell viability after 4 and 20 h of treatment. The intracellular delivery of macromolecules and the simultaneous intracellular delivery of two molecules under optimal treatment conditions were successfully achieved. We found that DNA plasmid was delivered by acoustic-transfection technique into epiblast stem cells, which expressed transient mCherry fluorescence.


Assuntos
Permeabilidade da Membrana Celular , Substâncias Macromoleculares/metabolismo , Transfecção/métodos , Ultrassom , Acústica , Sobrevivência Celular , Humanos , Fatores de Tempo , Células Tumorais Cultivadas/metabolismo
12.
Sci Rep ; 7(1): 14092, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074938

RESUMO

Single-cell analysis is essential to understand the physical and functional characteristics of cells. The basic knowledge of these characteristics is important to elucidate the unique features of various cells and causative factors of diseases and determine the most effective treatments for diseases. Recently, acoustic tweezers based on tightly focused ultrasound microbeam have attracted considerable attention owing to their capability to grab and separate a single cell from a heterogeneous cell sample and to measure its physical cell properties. However, the measurement cannot be performed while trapping the target cell, because the current method uses long ultrasound pulses for grabbing one cell and short pulses for interrogating the target cell. In this paper, we demonstrate that short ultrasound pulses can be used for generating acoustic trapping force comparable to that with long pulses by adjusting the pulse repetition frequency (PRF). This enables us to capture a single cell and measure its physical properties simultaneously. Furthermore, it is shown that short ultrasound pulses at a PRF of 167 kHz can trap and separate either one red blood cell or one prostate cancer cell and facilitate the simultaneous measurement of its integrated backscattering coefficient related to the cell size and mechanical properties.


Assuntos
Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Ultrassom/instrumentação , Ultrassom/métodos , Fenômenos Biomecânicos , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Linhagem Celular Tumoral , Tamanho Celular , Sobrevivência Celular , Desenho de Equipamento , Humanos , Masculino , Microscopia de Fluorescência , Poliestirenos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
13.
Biosens Bioelectron ; 97: 292-298, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28618365

RESUMO

Localized surface plasmon resonance (LSPR) biosensors allow label-free detection of small molecules in molecular binding events; however, they are limited by a relatively low sensitivity and narrow dynamic range. Here, we report highly sensitive small-molecule detection by LSPR peak shift exploiting the G-quadruplex (GQx) structure-binding characteristic of known GQx binders to enhance the LSPR signal of a plasmonic aptasensor. Six known GQx binders (thiazole orange, malachite green, crystal violet, zinc protoporphyrin IX, thioflavin T, and berberine) were tested for their ability to enhance the LSPR signal. Among these, berberine (BER) induced the largest LSPR peak shift by interacting with the GQx structure formed by the aptamer/target binding event on a gold nanorod surface. This specific binding performance was confirmed by the fluorescence signal of BER and through repeated cycles of BER addition and washing on the plasmonic sensing chip. The proposed plasmonic aptasensor respectively showed limit of detection (LOD) of 0.56, 0.63, 0.87 and 1.05 pM for ochratoxin A, aflatoxin B1, adenosine triphosphate and potassium ions, which was 1000-fold higher than that in BER-free condition, and a wide dynamic range from 10 pM to 10µM. In addition, the proposed LSPR aptasensor could effectively be used to quantitatively analyze small molecules in real samples.


Assuntos
Aptâmeros de Nucleotídeos/química , Berberina/química , Quadruplex G , Ressonância de Plasmônio de Superfície/métodos , Trifosfato de Adenosina/análise , Aflatoxina B1/análise , Ouro/química , Limite de Detecção , Nanotubos/química , Nanotubos/ultraestrutura , Ocratoxinas/análise , Potássio/análise
14.
Chemosphere ; 174: 524-530, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28189897

RESUMO

We synthesized fluorescent Cd nanoclusters (CdNCs) through a protein-directed method, and the synthesis method was utilized for a homogeneous, ultrasensitive, and selective detection of cadmium ion (Cd2+). CdNCs were synthesized using a modified protein-directed method for developing a rapid Cd2+ detection system. For rapid Cd2+ detection, the reaction time was reduced by optimizing the reaction conditions such as temperature, reducing agent concentration, and protein concentration. The synthesized CdNCs had ca. 2 nm diameter and showed strong fluorescence at 485 nm under 365 nm UV light. The fluorescence of the CdNCs increased with increasing Cd2+ concentrations, and the limit of detection in deionized water was 15.68 fM. This method enables the detection of Cd2+ through the Cd concentration-dependent formation of fluorescent CdNCs in tap, fountain, and pond water samples with detection limits of 0.75, 7.65, and 48.2 fM, respectively. The sensitivity and specificity of our method are comparable to those of several existing methods for Cd2+ detection. Furthermore, the system enables the homogeneous detection of Cd2+ without separation and washing, thereby broadening its application in analytical chemistry.


Assuntos
Cádmio/análise , Nanoestruturas/análise , Proteínas/análise , Poluentes Químicos da Água/análise , Cádmio/química , Água Potável/análise , Fluorescência , Nanoestruturas/química , Lagoas/análise , Proteínas/química , Raios Ultravioleta , Poluentes Químicos da Água/química
15.
Biosens Bioelectron ; 73: 26-31, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26042875

RESUMO

A highly sensitive localized surface plasmon resonance (LSPR) aptasensor for detection of adenosine triphosphate (ATP) has been developed. The sensor utilizes two split ATP aptamers, one (receptor fragment) being covalently attached to the surface of a gold nanorod (GNR) and the other labeled with a random DNA sequence and TAMRA dye (probe fragment). In the presence of both ATP and the probe fragment, a significant shift takes place in the wavelength of the LSPR band. This phenomenon is a consequence of the fact that the split fragments assemble into an intact folded structure in the presence of ATP, which brings about a decrease in the distance between the GNR surface and TAMRA dye and an associated LSPR wavelength. By using this sensor system, concentrations of ATP in the range of 10 pM-10 µM can be determined. In addition, by taking advantage of its denaturation properties, the LSPR aptasensor can be reused by simply subjecting it to quadruple salt-addition/2M NaCl washing steps. That the new method is applicable to biological systems was demonstrated by its use to measure ATP concentrations in E. coli and, thus to determine cell concentrations as low as 1.0×10(3) CFU.


Assuntos
Trifosfato de Adenosina/análise , Ressonância de Plasmônio de Superfície/métodos , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/métodos , Escherichia coli/química , Corantes Fluorescentes , Ouro , Nanopartículas Metálicas , Nanotecnologia , Nanotubos , Rodaminas
16.
Biosens Bioelectron ; 58: 308-13, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24658027

RESUMO

We have designed a single-stranded DNAzyme-aptamer sensor for homogeneous target molecular detection based on chemiluminescence resonance energy transfer (CRET). The structure of the engineered single-stranded DNA (ssDNA) includes the horseradish peroxidase (HRP)-like DNAzyme, optimum-length linker (10-mer-length DNA), and target-specific aptamer sequences. A quencher dye was modified at the 3' end of the aptamer sequence. The incorporation of hemin into the G-quadruplex structure of DNAzyme yields an active HRP-like activity that catalyzes luminol to generate a chemiluminescence (CL) signal. In the presence of target molecules, such as ochratoxin A (OTA), adenosine triphosphate (ATP), or thrombin, the aptamer sequence was folded due to the formation of the aptamer/analyte complex, which induced the quencher dye close to the DNAzyme structure. Consequently, the CRET occurred between a DNAzyme-catalyzed chemiluminescence reaction and the quencher dye. Our results showed that CRET-based DNAzyme-aptamer biosensing enabled specific OTA analysis with a limit of detection of 0.27ng/mL. The CRET platform needs no external light source and avoids autofluorescence and photobleaching, and target molecules can be detected specifically and sensitively in a homogeneous manner.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , DNA Catalítico/química , Medições Luminescentes/instrumentação , Ocratoxinas/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Transferência Ressonante de Energia de Fluorescência , Ocratoxinas/química
17.
Biosens Bioelectron ; 53: 330-5, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24176968

RESUMO

Microfluidic integrated enzyme immunosorbent assay (EIA) sensors are efficient systems for point-of-care testing (POCT). However, such systems are not only relatively expensive but also require a complicated manufacturing process. Therefore, additional fluidic control systems are required for the implementation of EIAs in a lateral flow immunosensor (LFI) strip sensor. In this study, we describe a novel LFI for EIA, the use of which does not require additional steps such as mechanical fluidic control, washing, or injecting. The key concept relies on a delayed-release effect of chemiluminescence substrates (luminol enhancer and hydrogen peroxide generator) by an asymmetric polysulfone membrane (ASPM). When the ASPM was placed between the nitrocellulose (NC) membrane and the substrate pad, substrates encapsulated in the substrate pad were released after 5.3 ± 0.3 min. Using this delayed-release effect, we designed and implemented the chemiluminescent LFI-based automatic EIA system, which sequentially performed the immunoreaction, pH change, substrate release, hydrogen peroxide generation, and chemiluminescent reaction with only 1 sample injection. In a model study, implementation of the sensor was validated by measuring the high sensitivity C-reactive protein (hs-CRP) level in human serum.


Assuntos
Técnicas Biossensoriais/métodos , Proteína C-Reativa/isolamento & purificação , Medições Luminescentes/métodos , Proteína C-Reativa/química , Humanos , Peróxido de Hidrogênio/química , Técnicas Imunoenzimáticas/métodos , Técnicas Analíticas Microfluídicas/métodos , Polímeros/química , Sulfonas/química
18.
ACS Nano ; 5(2): 897-904, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21222487

RESUMO

We describe the fabrication of elliptical Au nanodisk arrays as a localized surface plasmon resonance (LSPR) sensing substrate for clinical immunoassay via thermal nanoimprint lithography (NIL) and enhancement in the sensitivity of the detection of the prostate-specific antigen (PSA) using the precipitation of 5-bromo-4-chloro-3-indolyl phosphate p-toluidine/nitro blue tetrazolium (BCIP/NBT), catalyzed by alkaline phosphatase. Au nanodisks were fabricated on glass through an unconventional tilted evaporation, which could preserve the thickness of imprinted resists and create an undercut beneficial to the subsequent lift-off process without any damage to pattern dimension and the glass while removing the residual polymers. To investigate the optically anisotropic property of the LSPR sensors, a probe light with linear polarization parallel to and perpendicular to the long axis of the elliptical nanodisk array was utilized, and their sensitivity to the bulk refractive index (RI) was measured as 327 and 167 nm/RIU, respectively. To our knowledge, this is the first application of enzyme-substrate reaction to sandwich immunoassay-based LSPR biosensors that previously suffered from a low sensitivity due to the short penetration depth of the plasmon field, especially when large-sized antibodies were used as bioreceptors. As a result, a large change in local refractive index because of the precipitation on the Au nanodisks amplified the wavelength shift of the LSPR peak in the vis-NIR spectrum, resulting in femtomolar detection limits, which was ∼10(5)-fold lower than the label-free detection without the enzyme precipitation. This method can be extended easily to the other clinical diagnostics with a high sensitivity.


Assuntos
Ouro/química , Nanoestruturas/química , Nanotecnologia/métodos , Impressão/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Adsorção , Fosfatase Alcalina/metabolismo , Animais , Anticorpos/química , Anticorpos/imunologia , Bovinos , Dimetilpolisiloxanos/química , Vidro/química , Humanos , Antígeno Prostático Específico/imunologia , Antígeno Prostático Específico/metabolismo , Temperatura
19.
Langmuir ; 26(14): 12112-8, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20565061

RESUMO

We report a new method for the micropatterning of multiple proteins and cells with micrometer-scale precision. Microscope projection photolithography based on a new protein-friendly photoresist, poly(2,2-dimethoxy nitrobenzyl methacrylate-r-methyl methacrylate-r-poly(ethylene glycol) methacrylate) (PDMP), was used for the fabrication of multicomponent protein/cell arrays. Microscope projection lithography allows precise registration between multiple patterns as well as facile fabrication of microscale features. Thin films of PDMP became soluble in near-neutral physiological buffer solutions upon UV exposure and exhibited excellent resistance to protein adsorption and cell adhesion. By harnessing advantages in microscope projection photolithography and properties of PDMP thin films, we could successfully fabricate protein arrays composed of multiple proteins. Furthermore, we could extend this method for the patterning of two different types of immune cells for the potential study of immune cell interactions. This technique will in general be useful for protein chip fabrication and high-throughput cell-cell communication study.


Assuntos
Luz , Microscopia , Microtecnologia/métodos , Polímeros/química , Polímeros/metabolismo , Polimetil Metacrilato/química , Polimetil Metacrilato/metabolismo , Proteínas/química , Proteínas/metabolismo , Linhagem Celular Tumoral , Humanos , Solubilidade , Análise Serial de Tecidos , Raios Ultravioleta , Água/química
20.
Anal Biochem ; 374(2): 313-7, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18191463

RESUMO

The oyster mushroom spherical virus (OMSV) is a causative agent of dieback disease in the oyster mushroom, Pleurotus ostreatus. Outbreaks of this virus occasionally result in serious disease that is associated with hefty economic losses. Thus, the detection and removal of OMSV-infected spawn is considered to be a crucial step for the stable production of P. ostreatus. For the detection of OMSV, we attempted to generate monoclonal antibodies (mAbs) against an RNA polymerase domain (RPD) of an OMSV protein. In an effort to simplify the laborious multistep mAb screening process, we developed a protein microarray on a slide glass that is chemically modified with the RPD protein. The culture supernatants of 87 hybridoma cells, which were prepared from the fusion of RPD-immunized mouse spleen cells with myeloma cells, were spotted onto the RPD-coated microarray. The binding of mAb to RPD was detected via Alexa 488 dye-labeled anti-mouse immunoglobulin G (IgG) as a secondary antibody. Of 87 samples, 13 evidenced a significant level of fluorescence signal intensity. Subsequent immunoblot analysis revealed that the specificity of each mAb against RPD coincided with the corresponding fluorescence signal intensity, thereby indicating the effectiveness of the protein microarray in mAb screening.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Pleurotus/virologia , Análise Serial de Proteínas , Vírus/imunologia , Animais , Feminino , Hibridomas/imunologia , Hibridomas/metabolismo , Immunoblotting , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA